skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Expanding renewable electricity (RE) use in global corporate supply chains can help to achieve global net-zero greenhouse gas emissions targets by mid-century, but efforts face several challenges. First, corporations and their suppliers may be subject to varying climate policy stringency, leading to a misalignment of incentives to act. Second, measuring true progress is difficult, because counterfactuals are unobserved, and measures of effort vary under policy. Third, relevant policy and broader stakeholder audiences differ in the standards of measurement they recognize. Transparent and broadly accepted, or at least interoperable, standards for assessing effort would help corporations and nations strengthen confidence in corporate claims that RE procurement efforts support international climate goals. 
    more » « less
  2. A classic multi-period stochastic energy system expansion planning (ESEP) model aims to address demand uncertainty by requiring immediate demand satisfaction for all scenarios. However, this approach may result in an expensive system that deviates from the planner’s long-term goals, especially when facing unexpectedly high demand scenarios. To address this issue, we propose a chance-constrained stochastic multi-stage ESEP model that allows for a portion of demand to remain unmet in specific periods while still ensuring complete demand satisfaction during most of the planning horizon, including the final period. This approach provides more time flexibility to build infrastructure and assess needs, ultimately reducing costs and allowing for a broader view of infrastructure planning options. To solve the chance-constrained stochastic model, we introduce a binary- search-based progressive hedging algorithm heuristic, which is particularly useful for large-scale models. We demonstrate the effectiveness and benefits of implementing the chance-constrained model through a case study of Rwanda using real-world data. 
    more » « less
  3. Abstract Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO 2 ) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO 2 :NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO 2 :NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides. 
    more » « less
  4. Mechanosensitivity is one of the essential functionalities of biological ion channels. Synthesizing an artificial nanofluidic system to mimic such sensations will not only improve our understanding of these fluidic systems but also inspire applications. In contrast to the electrohydrodynamic ion transport in long nanoslits and nanotubes, coupling hydrodynamical and ion transport at the single-atom thickness remains challenging. Here, we report the pressure-modulated ion conduction in graphene nanopores featuring nonlinear electrohydrodynamic coupling. Increase of ionic conductance, ranging from a few percent to 204.5% induced by the pressure—an effect that was not predicted by the classical linear coupling of molecular streaming to voltage-driven ion transport—was observed experimentally. Computational and theoretical studies reveal that the pressure sensitivity of graphene nanopores arises from the transport of capacitively accumulated ions near the graphene surface. Our findings may help understand the electrohydrodynamic ion transport in nanopores and offer a new ion transport controlling methodology. 
    more » « less